
Problem Analysis
Guidelines for Software Specification Questions

Questions to Ask to State the Problem

The Problem Statement needs to be clear and concise, using just one object and one
deviation. If there is more than one deviation then there are multiple problems, and these
should be dealt with separately. Use Situation Appraisal to separate and clarify the problems
or concerns, and then prioritize them to enable a decision to be made as to which problem to
work on first.

Things to Watch Out For

Check that the concern is really a problem.

•	Is there a deviation between should and actual?
•	Is the cause unknown?
•	Do we need to know the cause to take action?

Look for the word “and” in the Problem Statement. You can only include a group of related
objects or related deviations if you are convinced that the same cause is operating for
everything you include!

Some deviations are not problems because they are desirable, but you may still want to find
the cause so you can keep them going, or make them happen in other situations. Positive
deviations may have undesirable consequences in other areas. Apply “Extend the Cause”
thinking to clarify. Verify that the Should is understood. Use data on the ‘should’ and ‘actual’
to formulate a specific statement about the deviation. Ask why the deviation occurred. If the
cause is known, ask why the cause happened and repeat until a deviation without a known
cause is revealed. Verify the need to know the cause in order to take effective action—a
workaround may be a higher priority.

Avoid jargon!

The Problem Specification

Remember the intent behind the questions. They are intended to collect actual data about the
problem against which possible causes can be evaluated; you will rarely solve the problem
simply by asking these questions. However, asking the customer these questions may trigger
a train of thought which enables them to solve the problem!

The questions that are provided are guidelines for the types of questions that can be used.
The intent is to use the questions that apply to your environment and modify the wording as
appropriate, based on your products. The best questions should be developed by a content
expert who is knowledgeable regarding KT process.

Question to the void. Ask ’turnaround’ and ’what else’ questions to ensure that you
get the most complete answers. If the answer you get does not answer your question,
acknowledge it and ask the question again.

07 January 2014	 710-46-P495313	 Copyright © 2005-2014 Kepner-Tregoe, Inc. All Rights Reserved.	 1

Problem Analysis
Guidelines for Software Specification Questions

KT Process Questions and Intent Software-Specific Questions

W
H

A
T

IS

What specific object(s) has the deviation?
To specifically identify the object with the deviation.

Before beginning to develop a specification, ask questions to
ensure that there is a cause-unknown deviation.

The answer to the What question can be very lengthy since
there are many dimensions to the product. Be as specific as
you can (e.g., version, operating system, patches, etc.). If
you are looking at a small part of a larger system, process,
or application, describe only the part that has not met the
‘should.’ If there are any other systems or applications that
are integrated, describe them in detail.

Avoid the temptation to describe what you think may be the
system or application that is at fault. Focus on the thing,
component, or product that is exhibiting the deviation.

•	 Describe what you were looking at when you first noticed
the problem.

•	 What is the specific description of the problem that you
are seeing or the task that you are trying to accomplish?

•	 How do you know this is a departure from the expected
performance?

•	 Which system/process/software/application/component/
function/method/part of the process is not working?

•	 If unsure, which area of the product is failing?

•	 Which OS, version, patch level, and platform? Which
version, patch level of the integrated application or
database?

•	 Is this version an upgrade from a previous version or is it a
new installation?

IS
 N

O
T

What similar object(s) could reasonably have the
deviation, but does not?
Identify the specific deviation on the object. What is (are) the
most closely related thing(s) to the IS that you might expect
to exhibit this same or a similar type of deviation, but in fact
does not? Again, to be helpful, these must be facts as well:
1) That they could logically exhibit the same/similar condition
AND, 2) in fact, do not.

•	 Which other similar objects/processes (with similar
dependencies) are working well and do not have the
specified problem?

•	 Which other similar/related applications/functions/
methods processes/parts of processes do not have
the specific problem? (Consider OS, platform, or
configuration.)

•	 If you attempt the same task over the web or LAN
interface, do you get the same problem?

•	 Do other components have the same problem?

•	 Did you find this problem in previous versions if this
object/process is an upgrade?

•	 Have you seen the application performing the same task
without customization (if a customized version)?

IS

What is the specific deviation?
To specifically identify the deviation on the object.

What does the unacceptable condition look, feel, smell,
sound, or taste like? Be specific—focus on describing
the deviation from the ‘should.’ Avoid using labels for the
type of deviation—try to describe it so that someone else
would know exactly what it looks, feels, smells, sounds, or
tastes like without seeing it. Include a picture or drawing,
if appropriate. Error logs, screen shots, or system reports
should be provided if they contain evidence of the deviation.

•	 What is the specific failure/error/problem?

•	 If the customer had to show you the deviation, what
would they show you?

•	 What exactly is displayed on the screen/application, etc.?

•	 What symptoms are present or errors are being reported?

•	 What specifically is it doing that it’s not supposed to?

•	 What did you expect the application to do?

•	 What is it NOT doing that it is supposed to?

•	 What evidence do you have of the problem?

•	 Describe the deviation from ‘should’ exactly.

IS
 N

O
T

What other deviations could reasonably be
observed, but are not?

Describe some other closely related unacceptable conditions
you might expect to see on/with this type of object, but in
this case, do not.

Be sure not to indicate the ‘should.’ Consider only other
similar types of deviations.

•	 What related failure/problem is not occurring in the
component/area?

•	 What other problems could reasonably be observed, but
are not?

•	 What functions, if any, of this application are performing
normally?

•	 What else could be going wrong with the application/
function/method/process but Is Not?

•	 Describe other closely related fault conditions that might
be observed on this object, but are not.

07 January 2014	 710-46-P495313	 Copyright © 2005-2014 Kepner-Tregoe, Inc. All Rights Reserved.	 2

Problem Analysis
Guidelines for Software Specification Questions

KT Process Questions and Intent Software-Specific Questions

W
H

E
R

E

IS

Where is the object when the deviation is observed
(geographically)?
To locate the objects with the deviation as on a map.

Where specifically is the affected object when the deviation is observed?
List all locations at which the object is and has been observed to have
the deviation, not simply the first place it appeared. Be as specific as
possible—use turnaround questioning to pinpoint exact location(s). The
exact location is particularly important if you have a good ‘is not’ on the
same site, or a similar site—same customer. Be sure to list all the locations
where the problem has been seen. Be as detailed as possible.

The answer to this question could start with “at the customer site on the
…” Consider whether it is a production system, test system, etc.

•	 Where is the hardware (that runs the system/process/
application) located physically?

•	 If this is an application/process, please draw a diagram
showing where it fits in to the whole system.

•	 What is its environment? Which building (address), floor,
room, rack, shelf, disk, network card, cable, network port,
router port, LAN, server, client?

•	 Where in the topology/network is the component failing?

•	 Which customer, network, access level, and interface is
experiencing the problem?

•	 Where is the router in the network/system?

•	 What is the specific area, location, user or users, group,
machine and/or activity?

•	 Where at that site? Which machines?

IS
 N

O
T

Where else could the object be when the deviation is
observed, but is not?
What are other locations at which the affected object (or a closely related
object) has actually been and has not exhibited the defective condition?
Again, be specific here—for each answer you got when specifying the IS,
look for a logical IS NOT.

•	 Where else could the hardware be when the problem is
observed, but is not? Name the places where you could
reasonably expect to see the problem, but do not.

•	 Is there a place where a similar setup exists, but you do not
see the problem? Describe this location.

•	 List other locations where the object, or a similar/same
setup has actually been, but has not exhibited the same fault
symptoms.

•	 Where else is the application/function/method/process not
failing?

•	 Where are there users that do not experience this problem?
What specifically are these user accounts, locations, etc.?

•	 Are you capable of creating a similar environment where the
problem does not exist? Describe the environment.

IS

Where is the deviation on the object?
To identify the specific locations on the object where we can see, hear,
feel, taste, or smell the deviation.

What part(s) or facet(s) of the object is (are) affected with the deviation?
Is it localized? If so, where? Be as specific as you can—provide specific
measurements and/or physical descriptions if possible.

This is sometimes hard for a software problem, but try and locate the part
of the object affected by the deviation.

You will likely have a variety of useful information, based on the type of
problem.

If we rephrase the question to “If you took me by the hand and led me to
where you see the problem, where would you take me?” the answer can
be “on the console,” or “in the messages file,” or “in the application log
file,” or “in the network analyzer printout,” and at the same time the answer
can be “disk c0t0d0s1.” Both kinds of answers maintain the intent, and
both are of use in resolving the problem.

•	 Where is the defect on the object?

•	 Where is the problem in the software? Which module/
component/function/screen?

•	 Where in the process are you observing this problem?

•	 In the process, which function/process step has the
problem?

•	 Where are you looking when you observe the problem?

•	 Which specific line of the output are you reading that shows
the problem?

•	 Which specific screen of the browser/GUI are you looking at
when you see the problem?

•	 When decompiling or debugging, at what specific procedure
or function do you see it fail?

IS
 N

O
T

Where else could the deviation be located on the object,
but is not?
What other part(s) or facet(s) of the object might you expect to be affected
and in fact is (are) not? If the entire object is affected, is it possible that this
type of deviation could be localized? If so, which part(s) or facet(s) would
you expect to be affected, but in fact is (are) not?

Describe all parts of the object that could reasonably be affected, but are
not.

•	 Where else could the defect be located on the object, but is
not?

•	 Where else in the process could this problem be observed,
but is not?

•	 What process steps executed correctly since the application
had the problem?

•	 Which parts of the output could reasonably exhibit this
problem, but do not?

•	 Which screen of the browser/GUI could reasonably have this
deviation, but does not?

07 January 2014	 710-46-P495313	 Copyright © 2005-2014 Kepner-Tregoe, Inc. All Rights Reserved.	 3

Problem Analysis
Guidelines for Software Specification Questions

KT Process Questions and Intent Software-Specific Questions

W
H

E
N

IS

When was the deviation observed first (in clock and
calendar time)?
To identify a specific point in time when we know we had a problem
(deviation).

On what date and at what time on that date was this problem first
observed? Be as specific as possible. Avoid the tendency to list
events which seem to correspond with the timing of the problem—
this could restrict your thinking when developing possible causes.

The answer to this question can be crucial and can lead the
customer to discover the answer. Push hard for specifics. If you
cannot get an exact date and time, an approximate one is better than
nothing. You’ll know how painful it is scanning a 30MB log file for a
deviation when you have no idea what time the problem happened.

Having the time also enables you to ensure that the log files you
request relate to the correct time period, and are therefore useful.

•	 What date and time did the customer/user first see
the problem?

•	 When exactly was the problem first documented or
reported?

•	 Did it start at all locations at the same time? When
did it start at the other locations?

•	 Is this a non-working new install or a startup
problem? Has it ever worked correctly?

IS
 N

O
T

When else could the deviation have been observed
first, but was not?

On what other date(s)/time(s) might this problem have started, but in
fact did not?

The question determines how long the system or application has
been running without a problem in its current configuration.

•	 When was the last time it worked correctly?

•	 When else could this problem possibly have started,
but did not?

•	 When was the last time you checked, prior to that?

•	 When would have been the next time you would
have checked?

•	 Has this application/function/method/process ever
worked?

IS

When since that time has the deviation been observed?
Any pattern?
To understand the frequency of the problem.

What is the frequency of occurrence of this problem on this object?
Since the first occurrence, when else has it appeared? Be specific,
using date(s) and time(s) at which the problem starts and stops each
time.

Refer to charts or logs if available. View for a long enough timeframe
to identify patterns if they exist.

Does it exhibit any of the following patterns?

•	 Continuous: the problem is in existence every time the object
is observed;

•	 Periodic: the problem comes and goes with a predictable
frequency;

•	 Sporadic: the problem comes and goes with no predictable
frequency.

If the deviation is periodic or sporadic, note the start and end date,
time of recurring deviations, and frequency of occurrence.

•	 When since then has the problem occurred. List all
occasions exactly, using date and time?

•	 What subsequent times has the problem been seen
or reported/documented?

•	 How often is the problem reflected in the logs or
traces?

•	 How often do users report the problem?

•	 What pattern exists, if it can be identified at this
point?

•	 What evidence do you have of this pattern?

IS
 N

O
T

When since that time could the deviation have been
observed, but was not?
When else, since the first occurrence, might you have expected the
problem to be in existence, but in fact was not? What other patterns
in timing could you have expected to see, but did not? Could it have
been continuous, periodic, or sporadic?

•	 When since could the problem have been seen, but
was not?

•	 What times has the system/application worked
properly since the first error?

•	 What timing patterns could have been expected,
but were not seen?

07 January 2014	 710-46-P495313	 Copyright © 2005-2014 Kepner-Tregoe, Inc. All Rights Reserved.	 4

Problem Analysis
Guidelines for Software Specification Questions

KT Process Questions and Intent Software-Specific Questions

W
H

E
N

 (
c

o
n

t.
)

IS

When, in the object’s life cycle or history, was the
deviation observed first?
To understand the specific functional or operational considerations
under which the deviation occurs.

At what point(s) in the purchase, install, decommissioning, boot, run,
shutdown, etc., of the object does the deviation first appear? Be as
specific as you can here—focus on the exact point(s) in the life cycle:
What is being done to the object or what is the object doing when the
problem appears?

The intent of the life cycle question is dependent upon the nature of the
object in question—what are the various stages/steps in the life cycle
of the object? Observe the object and study its life cycle carefully when
describing this aspect of the problem. There can be more than one
answer to this question—depending upon the nature of the object.

IMPORTANT: Users who are asked, “What were YOU doing?” may
feel threatened (or guilty if they have done something stupid) and reply,
“Nothing,” so the question always needs to be impersonal: “What was
happening…?”

•	 What is the system or application doing or having
done to it when the problem is observed?

•	 What is the exact sequence of activities (boot up
sequence, keystrokes, etc.) preceding the problem?
At what point was the problem noticed?

•	 Have you seen the same application performing the
same task before an upgrade or patch was applied?

•	 At what point in the internal communication between
processes or applications is the failure seen (as
recorded through traces and log files)?

•	 When in the software’s history or life cycle was
the problem observed first (consider protocol life
cycle, operational life cycle (e.g., booting, loading
OS, loading configuration, initialization, starting
applications)?

IS
 N

O
T

When else, in the object’s history or life cycle could the
deviation have been observed first, but was not?
At what other point(s) in the production, use, testing, shipping, etc.,
of the object might you expect the problem to first appear, but in fact
does not? Again, the more you study the life cycle of the object, the
better you will be able to describe this part of the problem. Be sure
and try to describe an IS NOT for each IS you have identified in the life
cycle.

•	 When else in the object’s life cycle could the error
have been seen, but was not (e.g., warm boot
versus cold boot, read only versus read/write)?

•	 At what point in your sequence of activities are you
sure that the problem was not happening?

•	 At what point in the internal processes is the
application/function/method/process working where
you would think it should also fail?

•	 When in the software’s history or life cycle could the
problem have been observed, but was not?

07 January 2014	 710-46-P495313	 Copyright © 2005-2014 Kepner-Tregoe, Inc. All Rights Reserved.	 5

Problem Analysis
Guidelines for Software Specification Questions

KT Process Questions and Intent Software-Specific Questions

E
X

T
E

N
T

IS

How many objects have the deviation?
To determine the magnitude of the problem.

What is the exact count of the number of object(s) affected with the
defective condition? The answer to this question depends on the
nature of the object—it could be an absolute count, percentage of
functions, etc. Where the object is an application, this could mean
the number of instances of the application. Where the object is a
process (e.g., a query) it could be the number of queries returned
with out-of-spec. responses.

•	 How many objects have the problem?

•	 How much of the software is affected?

•	 How many systems/processes/applications/
connections have the problem?

•	 How many instances of this application or process
have the fault or error?

•	 How many sessions are getting dropped/freezing?

IS
 N

O
T

How many objects could have the deviation, but do
not?
What other counts, percentages, etc., of the object might you expect
to have been affected with the deviation, but in this case were not?
If 100% of the objects are affected, is it possible that only some of
them could have been?

•	 How many objects could have the problem, but are
not impacted? (Note whether factual or estimated.)

•	 How much of the software could be affected, but
is not?

•	 What is the total number or percentage of systems/
processes/applications/connections that could have
the problem, but do not?

•	 How many sessions could be getting dropped or
freezing, but are not?

IS

What is the size of a single deviation?
What is the most appropriate measure of the level or degree of
severity of the defective condition on/with any one object? The
answer to this question depends on the nature of the object and
deviation in question. It could be a physical size, degree of severity,
percentage of surface area affected, percent/amount of time/$ off
‘should,’ etc. Study the defective condition carefully to answer this
question.

In the software environment, this question is meaningless for a crash,
or any other failure which is ‘total.’

•	 What is the size of the problem (severity)?

•	 How many problems do you see with the system/
process/application?

•	 How much above normal is the CPU load?

•	 How long was the system/process/application
frozen or ‘hung’?

IS
 N

O
T

What other size could the deviation be, but is not?
What other level(s) or degree(s) of severity might you expect this
problem to exhibit, but in this case does not? Again, study the object
and deviation carefully and look for other appropriate measures of the
defective condition that might be happening under similar conditions,
but in this case are not.

•	 What other size of defect could be expected, but is
not seen?

•	 How many problems could you see within the
system/process/application, but do not?

•	 How long could the system/process/application
have been frozen or ‘hung,’ but was not?

IS

How many deviations are on each object?
Does the deviation appear in multiple locations on/with the object? If
so, provide a specific count of the number of deviations on any one
object. If the count is a range, provide the extremes and as specific
an accounting as possible of the number or percentage of objects at
each level of the range.

•	 How many entries are in the error log?

IS
 N

O
T

How many deviations could there be on each object,
but are not?
What other counts of the deviation might you expect to see on/
with any one object, but do not? If the answer to the IS question is
a range, what other range(s) might you expect to see, but do not?
Is it possible that it could always be the same number of deviations
per object? What is the most likely number of deviations you would
expect to see under similar conditions, but in this case do not?

•	 How many entries could there possibly be in the
error log, but are not seen?

07 January 2014	 710-46-P495313	 Copyright © 2005-2014 Kepner-Tregoe, Inc. All Rights Reserved.	 6

Problem Analysis
Guidelines for Software Specification Questions

KT Process Questions and Intent Software-Specific Questions

E
X

T
E

N
T

 (
c

o
n

t.
)

IS

What is the trend?

Over the entire existence of the problem, what has been the growth
or shrinkage of the problem’s symptoms, in terms of:

•	 The number of affected objects?

•	 The severity of the defective condition?

•	 The number of deviations on any one object?

Be as specific as you can with the trend. Request any appropriate
graphs or charts that might describe the trend of the problem.

•	 What is the change, if any, over time in the number
of applications/users/processes affected?

•	 What is the change over time of the degree or size
of the failure, where there is a measured extent?

•	 What is the trend in terms of the number of errors
on this application?

•	 How does increased up time affect the occurrence
of the problem? Does it get better, get worse, or
stay the same?

•	 How do fluctuations in usage affect the problem?
Does the problem happen more often, less often, or
stay the same as usage declines/as fewer users are
connected/as usage increases?

IS
 N

O
T

What could be the trend, but is not?
Given what you know about the trend of the problem over time, what
other trends might you have expected to see, but in fact did not? Try
to provide an IS NOT for each IS in your description of the trend. In
general, the IS NOT is any other possible trend than the one actually
seen.

•	 What other types of trends could possibly occur,
but are not seen?

07 January 2014	 710-46-P495313	 Copyright © 2005-2014 Kepner-Tregoe, Inc. All Rights Reserved.	 7

